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This paper investigates the observability of relative satellite dynamics when only relative 
angle measurements are available.  It has been shown previously that, for non-maneuvering 
motion, the Cartesian states are unobservable with angles-only measurements and, 
furthermore, none of the Cartesian states can be determined from these measurements.  In 
this paper it will be shown that if the relative state is characterized instead using a geometric 
parameter set known as relative orbit elements, many of these parameters can be calculated 
directly from the angle measurements.  This method allows one to quickly get an idea of the 
geometry of a relative trajectory based only on angle measurements. 

I. Introduction 
he primary objective of a satellite navigation system is to accurately determine a satellite’s inertial position and 
velocity in space through onboard measurements pertaining to the satellite’s position with respect to either the 

Earth or navigation beacons.  Similarly, a relative navigation system allows the determination of the relative 
position and velocity of one satellite (a “deputy”) with respect to a reference satellite (a “chief”).  This type of 
system uses measurements pertaining to the deputy’s position with respect to the chief.  The design of autonomous 
relative navigation systems has been a popular research area the past few years.  Such systems allow a spacecraft 
that is following a desired relative trajectory with respect to the chief to detect deviations from the desired trajectory, 
so it can then compute the required corrective action.   
 The most common measurement types for relative navigation systems, as with inertial navigation systems, are 
range and angles; in this case, the range is the distance from the deputy to the chief, and the angles are the relative 
azimuth and elevation indicating the direction from deputy to chief, with respect to a nominal plane (usually the 
chief’s orbit plane).  However, in some cases the deputy may not possess a ranging sensor, but can only measure 
relative angles.  These angles (azimuth and elevation) can be immediately converted into a line-of-sight (LOS) unit 
vector from the deputy to the chief in the deputy’s body-fixed frame.  Then, using the satellite’s attitude 
determination system and a series of coordinate rotations, this LOS vector can be expressed in whatever coordinate 
frame is desired. 
 It has been shown previously1 that, for a relative navigation filter based on the Hill’s-Clohessy-Wiltshire (HCW) 
equations2-3, the Cartesian states characterizing the deputy’s relative motion (i.e., its relative position and velocity 
components with respect to the chief) are unobservable with angles-only measurements, if neither satellite is 
maneuvering; namely, none of the Cartesian states can be recovered from these measurements.  However, Ref. 1 
indicated that the angle measurements do allow one to determine what “family” the relative trajectory belongs to.  
That is, it can be determined whether the trajectory is stationary with respect to the chief or drifting, as well as 
information about the shape of the trajectory. Thus, there ought to be some amount of geometric information 
recoverable from angle measurements.  In this paper, the authors choose to characterize the relative state using a 
geometric parameter set known as relative orbit elements.4  These are based on the solution to the HCW equations 
and give a geometric rather than a Cartesian representation of the relative state.  It will be shown that, for a given 
trajectory, the values of several of the relative orbit elements (ROEs) can be calculated directly from the line-of-
sight vectors.  Because the angle measurements are imperfect, the calculated values will only be considered an 
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estimate.  Although not a full-blown relative navigation scheme, this method allows one to quickly get an idea of the 
geometry of a relative trajectory based only on angle measurements. 
 

II. Relative Satellite Dynamics 
Three major assumptions inherent in the HCW equations are that the only force modeled is that of a point mass 

gravitational field; the chief is in a circular orbit; and the distance between the satellites is small compared to their 
orbital radius.  These assumptions yield the following linear time-invariant differential equations: 
 

             (1) 

 
The equations are written in the local-vertical, local-horizontal (LVLH) coordinate frame, whose origin is at the 
chief satellite.  In these equations, x is the component of the deputy’s position vector relative to the chief in the 
radial direction positive away from the Earth; y is the along-track component positive along the velocity vector of 
the chief; z is the cross-track component perpendicular to the orbital plane of the chief; and n is the mean motion of 
the chief. 

The solution to Equations (1) is: 
 

     (2) 

 
where x0, y0, etc, are conditions at some epoch time t0, and t is the time since t0.  Consider the following change of 
coordinates from :1-2 

        (3) 

 
where ae, xd, yd, β, zmax, and γ are the ROEs.  The inverse of this transformation is 
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      (4) 

 
It was shown in Ref. 2 how the ROEs evolve with time: 
 

          (5) 

 
These equations are analogous to Eqns (2) for  in that they express the ROE values at any given time 
as a function of their initial (epoch) values and the time since epoch. 
 
The parameterization of Eqns (4) reveals that the relative motion in the x-y plane of the deputy with respect to the 
chief is a superposition of periodic motion in x and y, with period equal to that of the chief ’s orbit, and secular 

motion in y.  Essentially, this is an elliptical path that is drifting in the y-direction at a rate of .  The 

instantaneous center of the ellipse is (xd, yd).  It has a semimajor axis of length ae in the along-track direction and 
semiminor axis of length ae/2 in the radial direction.  β is a parametric angle (i.e. phase angle) indicating the location 
of the deputy satellite in its trajectory, with β = 0 corresponding to the perigee location (the “bottom” of the ellipse).  
The relative motion, if the elliptical path were “frozen” at a point in time, is depicted in Figure 1.  Although the 
ellipse is actually drifting, it has been frozen in order to conveniently label the ROEs.  The z motion, according to 
the HCW model, is purely sinusoidal and independent of x and y. 
 

 
 

Figure 1.  Planar Projection of Relative Motion Trajectory with Relative Orbit Elements Labeled. 
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III. Relationship Between LOS Vectors and ROEs 
 

For this exercise it will be assumed that Line of Sight (LOS) unit vector has already been obtained and has the 
components ix, iy, and iz, pointing along the LVLH x, y and z axes respectively. The LOS vector can be expressed as 

               (6) 

 
where is the relative position vector between the two satellites.  Since 
 

              (7) 
 
we can rewrite the LOS vector in terms of the Cartesian relative states: 
 

            (8) 

Substituting in Eqns (4) will yield an expression for the LOS vector in terms of ROEs: 
 

  (9) 
 
 

  (10) 
 
Thus, if we acquire the LOS vector (i.e. angle measurements) at several times along a trajectory, eventually we will 
have enough equations to solve for the unknowns (ROEs).   

 

IV. Results 
Equations (9) and (10) represent six relationships and six unknowns. Even though these equations are extremely 

nonlinear, and some of the ROE’s are not observable, we are postulating that some of the ROE values can be found 
either explicitly or numerically. 

A. Families of Solutions given two LOS Vectors 
Having a known β0 and ψ0, greatly simplifies the problem of solving for the other LOS values. β and ψ are 

periodic values that could be obtained in a number of ways. One simple way is to derive β and ψ from the azimuth 
and elevation angle histories. β = 0 when the elevation angle is at a local minimum. ψ = 0 when the azimuth angle 
ascends through zero. An example using the initial conditions below may be found in Figure 2.  
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Figure 2.  Example of solving for ψ and β from Azimuth and Elevation histories. 

 
Equations (9) and (10), relating the LOS measurements to the ROE’s, may be reformulated in terms of the range 
between the chief and deputy.  
 

  (11-12) 
 
where 
 

  (13) 
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and similarly for R1.  As a result, the measurements ir0 and ir1 correspond to a single solution associated with an 
assumed value for R0.  The result is a whole family of solutions dependent on the value of R0. 
 
Once an assumed value for R0 is selected, zmax may be solved by noting that 
 

                (14) 
. 
Rearranging Equations (11) and (12) results in the equation below: 

 

    (15) 

 

Solving for this family of solutions given ir0, ir1, Δt, β0, and ψ0 is necessarily a numerical process. Note that only the 
first three equations are necessary to constrain the problem, and the solution is represented by the intersection of 
three planes as seen in Figure 3. As the assumed value for R0 is increase the magnitude of xd, yd, and ae will increase. 

 

 
Figure 3.  Representation of the solution for xd, yd, and ae given an assumed initial range, two LOS vectors and the 

time they were apart. 
 
An example solution set with unknown xd, yd, ae, and zmax and the actual values below is shown in Figure 4. 
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Figure 4.  Representation of some of the possible trajectories given two LOS vectors, Δt, ω, β0, and ψ0. 

 

B. Solutions Given Additional Info 
In the case where ae is known, it is a simple matter to numerically solve Equation (15) for xd, yd0 , and zmax as 

long as ae is nonzero. Numerical solver ambiguity about the sign of zmax can be eliminated by also solving 
 

           (16) 
 
Similarly, in the case where xd is known then it is a simple matter to numerically solve Equations (15) and (16) for 
ae, yd0 , and zmax as long as xd is nonzero. Note that the parts of Equation (15) that contain xd must be used in order to 
obtain the correct solution.  In the case where yd is known, it is a simple matter to numerically solve Equations (15) 
and (16) for ae, xd, and zmax as long as yd is nonzero. Note that the parts of Equation (15) that contain yd must be used 
in order to obtain the correct solution.  In the case where zmax is known, it is a simple matter to numerically solve 
Equations (15) and (16) for ae, xd , and yd as long as zmax is nonzero. 

 

C. Solutions for Special Cases 
In the case where ae = 0 than the following will be true: 
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          (17) 
 
If xd=0 than the following holds true:  

    

      (18) 

 

In a practical sense, this means that ix and iy and iz will follow the same track every orbit.  Two examples are seen in 
Figure 5.  This will hold true even when β and ψ are unknown.  Note that the y axis is a normalized value with 
respect to the magnitude of the unit vector. 

 
Figure 5.  LOS measurement histories when xd = 0. 

Unless xd =0, yd will equal zero for only an instant. This is not very useful, so only the situation when both xd and 
yd=0 will be examined. In this case, the following will hold true:  
 

 

         (19) 
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As in the case where xd =0, ix and iy and iz will follow the same track every orbit.  However, the iy component will 
oscillate about 0 as seen in Figure 6.  This will hold true even when β and ψ are unknown.  
 

 
Figure 6.  LOS measurement history as a function of time when xd and yd = 0. 

 
If zmax =0 then the following holds: 
 

   

    (20) 

 
Thus, if two LOS measurements, not taken a half period apart, both have an iz component of 0, then zmax must equal 
zero. This will hold true even when ψ and β are unknown. 

D. Analytical Solutions with a Single LOS Measurement 
Squaring Eqn (9) and then multiplying both sides by the denominator (here, cos(β) is replaced by c(β), and sin(β) 

by s(β)), results in: 
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                        (21) 

 
This is a form that allows analytical solutions for many of the ROE’s. 

In the special case where ae is the only unknown and all measurements are perfect, it is possible to analytically 
solve for ae given any component of a single LOS vector (ir = [ix iy iz ]T ), but using all three often eliminates 
multiple positive and real solutions. This is done as follows.  Collecting like terms results in the following quadratic 
equations:  
 

   (22)-(24) 
 
These equations can be solved by way of the quadratic equation. Examples show that they will share at least one 
common, real solution unless the coefficients go to zero (e.g. xd = 0 and β = 0 or 180◦, or when yd = xd = 0). When ix 
= 0, then ae = 2xd/c(β) . If iy = 0, then ae = −yd/s(β) . If iz = 0 than no useful information results. 
 

A more intuitive understanding of these equations may result when one assumes that the deputy and deputy or in 
the same orbit plane.(i.e. zmax = 0). For example, given the following ROE’s and associated LOS vectors: 
 

    
 
Eqns (22) and (23) yield: 
 

 
 
Equation (24) has only zeros as coefficients.  The allowable solutions for ae are 0.0313372 or 0.04 km as shown in 
Figure 7. 
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Figure 7.  Possible solutions for ae given a 2D LOS vector: ae = 0.0313372 or 0.04 km. 

 
The allowable solutions for ae result from the fact that Eqns (22) and (23) are insensitive to the sign of the x and y 
components of the LOS vector in the 2D case. In the case where zmax is non-zero, the solutions for Eqns (22)-(24)  
may also result in multiple solutions, but they will be skewed from the results seen above based on the values of zmax 
and ψ. They will also share only one common solution, making the problem explicitly solvable.  

In the case where xd is the only unknown, the following quadratic equations may be derived from Eqn (21): 

 
                      (25)-(27) 

 
Note that if ix=0 then xd = ae/2c(β). If iy or iz = 0 than no useful information about xd can be derived.  Unlike ae, all 
three equations will yield the same quadratic even in the 3D case.  An example solution to these equations, given the 
ROE's and LOS measurements below, is xd = 0.00454428 or 0.01 km as shown in Figure 8. 
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Unlike the case with ae, the solutions to these quadratic equations are insensitive to the sign of the x and y 
components of the LOS vector even in the 3D case.  Other methods must be applied to refine the answer.  The 
simplest method is to see which solution matches the sign on ix. To solve explicitly, another measurement must be 
taken.  This is explored in section E. 

 

  
 

Figure 8.  Possible solutions for xd given a 3D LOS vector xd=0.00454428 or 0.01km. 
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Solving Eq (21) for yd yields the following quadratic equations:  
 

                             (28)-(30) 
Like xd, these three equations will yield the same results even in the 3D case.  An example solution to these 

equations, given the ROE's and LOS vector below, is yd =-0.03697245 or 0.03 km as shown in Figure 9. 

    

  
Figure 9.  Possible solutions for yd given a 3D LOS vector: yd =-0.03697245 or 0.03 km 

Similarly to xd, the solution to these quadratic equations are insensitive to the sign of the x and y components of the 
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LOS vector even in the 3D case. Other methods must be applied to refine the answer. The simplest method is to see 
which solution matches the sign on iy. To solve explicitly, another measurement must be taken. This is done in 
section E. 
 
Solving Eq (21) for zmax results in the following equations:  

 
                            (31)-(33) 
 

Solving using the quadratic equation results in solutions in the form:  .  Thus it can be seen that 
analytically, the positive real result is the correct solution. 
 
Solve for ψ using the following equation 

 
where 

 
                 (34)-(36) 
These solutions will only work if ix or iy or iz ≠ 0 respectively, otherwise there will be a zero in the denominator of 
K. The solutions are also unable to distinguish between quadrants I and II, or III and IV because an identity using 
sin(ψ) was used to derive the solutions. Comparing the possible solutions to the actual LOS measurements is a 
simple way to resolve this problem.  

E. Analytical Solutions with Two LOS Measurements 
Given two measurements, xd can be solved for without the multiple solution problem found with a single 

measurement. Solving equations 9 and 10 for xd results in the quadratic equations below:  
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Using the ix component of the LOS vector:  

 
                            (37)-(38) 
 

Using the iy component of the LOS vector: 

(39)-(40) 
 
Using the iz component of the LOS vector: 

 
                             (41)-(42) 
 
Each pair of equations shares only the correct solution. This can be empirically understood from the fact that the 
alternate solution for the first equation results exists because the component LOS value has been squared. Only the 
correct solution will match the propagated yd0 in the second equation.  
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Given two measurements, yd can be solved for without the multiple solution problem found with a single 
measurement. Solving equations 2 and 3 for yd results in the quadratic equations below: 
 
Using the ix component of the LOS vector: 

 
                             (43)-(44) 
 
Using the iy component of the LOS vector: 

 
                             (45)-(46) 
 
Using the iz component of the LOS vector: 

 
                             (47)-(48) 

Each pair of equations shares only the correct solution. This can be empirically understood from the fact that the 
alternate solution for the first equation results exists because the component LOS value has been squared. Only the 
correct solution will match the propagated yd0 in the second equation.  
 
 

V. Conclusion 
As the need increases for accurate relative satellite navigation systems (and ones that can operate given a sparse 

amount of measurement data), the methods described in this paper could become quite useful.  Given only relative 
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angle measurements (i.e. line-of-sight vectors) between two satellites and a model based only on two-body 
dynamics, the unobservability problem is inevitable.  However, this method allows one to gain some knowledge of 
the geometric aspects of the satellite’s relative trajectory.  Such an algorithm could be incorporated into on-board 
flight software, employed by mission operators on the ground, or simply used as a post-processing tool for mission 
data.  Future efforts will involve expanding the algorithm into a filter technique that can estimate relative orbit 
elements given a sizeable amount of angle measurement data. 
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